
Stability Analysis of BLDC Motor Speed
Controllers Under the Presence of Time Delays in

the Control Loop
Julio C. G. Pimentel

Kylowave Incorporated
Ottawa, ON, CA

Email: jpiment@kylowave.com

Emad Gad
University of Ottawa

Ottawa, ON, CA
Email: egad@site.uottawa.ca

Sebastien Roy
Sherbrooke University
Sherbrooke, QC, CA

E-mail: Sebastien.Roy13@usherbrooke.ca

Abstract—This work discusses the stability issues of PI-based
brushless DC motor (BLDCM) speed controllers under the pres-
ence of strong time delay in the controller loop. Understanding
of the time delay effect is of paramount importance to increase
performance, quality and productivity in important modern
applications. Unfortunately, the time delay effect in the speed
controller asymptotic stability has not been well studied in the
existing literature.

In this work, we present an algebraic technique to calculate the
maximum time delay that can be accepted in the control loop of a
BLDCM speed controller before the response becomes unstable.
Initially, we derive an analytical model for the set point tracking
(SPT) and the load disturbance rejection (LDR) responses taking
into account the various sources of time delay. Using a recently
proposed stability analysis methodology, we derive accurate
stability conditions for the BLDCM speed controller. The results
show that tuning the PI controller for very fast response causes
the time delay to significantly affect the system stability. As
an example, the asymptotic stability of the LDR of a sensored
controller is analyzed. The method proposed here can be easily
extended to analyze the stability of the SPT response and the
stability of sensorless controllers such as the direct Back EMF.

Keywords—Stability, Electric Differential, Electric Vehicle,
High Speed Spindle, Motor Control, BLDC, High Speed Motor.

I. INTRODUCTION

In the last decade, the so called BLDC motor became
widely used in a variety of applications because of its robust
mechanical topology and simplicity of control, higher speed of
operation, higher torque for the same power density and lower
manufacturing cost compared to existing frequency and vector
controlled AC drives. Thus, BLDCMs have become widely
used in low power and high speed applications creating a need
for efficient and low cost controllers [1] [2]. Currently, they
are used in energy related applications such as hybrid vehicles
integrated starter-generator, fuel pumps and electric differential
[3] [4] [5], consumer appliances, computer numerical control
and drilling tools, small hydro and wind energy generation and
flywheel energy-storage systems [6] [7].

In order to achieve high operating speed, the BLDCM
design often adopts a small motor frame and consequent
small rotor inertia, phase resistance and inductance, which
leads to high efficiency and fast electrical and mechanical

dynamics. Therefore, these motors are capable of fast SPT
and fast LDR on the order of milliseconds. Existing literature
has shown that the delay introduced by the sensors, actuators,
the discretization method and the plant itself can significantly
affect the system stability. This problem becomes even more
important when the system response time is on the same order
of magnitude or smaller than the delay.

There is limited available information in the existing litera-
ture concerning the effect of time delays on the asymptotic sta-
bility of speed controllers. Its effect is especially important in
mission-critical applications such as electric vehicles, aircrafts
and health care applications where acceptable performance
must be guaranteed at a large range of operating conditions
and at reasonable cost. Traditionally, the time delay effect
has been analyzed using classical methods based on Bode
or Nyquist plots [8] [9]. These graphical methods are easy
to use and provide some insight if one seeks the effect
of a particular value of delay. Otherwise, they are rather
inconvenient if one seeks to analyze a range of delay values
as a plot would need to be constructed for each value of
interest. The development of an algebraic asymptotic stability
criterion would be much more convenient. Because of the
difficulty involved in fully analyzing the effect of the time
delays, motion control designers tend to adopt conservative
tuning for the controllers, which is contradictory with the need
for very high performance required by those applications.

Recently, some effort has been made to develop analytical
methods that can be used for more general analysis in order to
provide further insight into the overall system stability. These
methods were developed using the Lyapunov functional stabil-
ity theory. In [10], the authors analyze the stability of a novel
BLDCM control scheme using Hall-effect switching technique
to ensure closed-loop stable operation under various sets of
loads, speeds, and input voltages. Reference [11] extends the
previous work and derives a novel stability criterion that also
considers the effect of the load torque. However, neither work
considers the effect of the Hall sensor speed measurement
delay in the overall system stability. It is noteworthy that a
similar delay effect should also happen when a direct Back
EMF sensorless method is used instead of a Hall sensor. These



methods use the back EMF voltage measured at the stator
winding of the floating phase to detect the Back EMF zero-
crossing point (ZCP). The ZCP can be used to estimate the
rotor position and the inverter driver commutation controls by
an additional shifting of 30o. In case of a three-phase BLDCM,
it produces 6 commutations per revolution [3].

In this work, we present an accurate analysis of a BLDCM
speed controller stability under various speeds, load torques
as well as contributions from various sources of time delays.
We construct an analytic model with delays for the SPT and
the LDR responses and use a recently presented time delay
analysis method, initially proposed in [12], and later extended
in [13], to derive the stability conditions under the presence
of strong time delays, and compare the results to a commer-
cial controller. By means of theoretical analysis, simulation
and experimentation, we show that the conditions match the
expected results. The paper is organized as follows: Section
II briefly develops the BLDCM state-space model. Section
III identifies various sources of delay affecting the controller
stability and presents the development of the BLDCM models
with time delays. Section IV presents a quick summary of
the time delay analysis method used and derives the stability
conditions. Finally, Section V presents the test bench built to
validate the results including simulated and measured results.

II. BLDCM STATE SPACE MODEL

Modeling of BLDCMs has been well studied in the literature
such that it is briefly presented here [1] [14] [15]. Assuming
that the BLDCM of Figure 1 is symmetric in all three phases
and that there is no change in the rotor reluctance with angle
because of a non-salient rotor, its electrical circuitry model
can be written as
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Fig. 1. BLDC Motor Electric Circuitry.

�
va
vb
vc

�
�

��
Rs 0 0
0 Rs 0
0 0 Rs

�
�

d

dt

�
Ls 0 0
0 Ls 0
0 0 Ls

�
� ia
ib
ic

�
�
�
ea
eb
ec

�
, (1)

where va, vb, vc, ia, ib and ic are the motor phase voltage and
currents respectively, P is the number of poles, L and M are
the winding self and mutual inductance, Ls � L �M and
ea, eb and ec are the induced BEMF voltages. In a PMM, the
BEMF is a function of the rotor position and can be written as
epθq � λωrfpθq, where λ represents the total flux linkage and
ωr is the motor shaft rotational speed. For a BLDCM, fpθq
is a trapezoidal function with peak values at �1 and �1. For
the sake of clarity, from now on we will henceforth omit the
angle θ in the BEMF equation. The generated electromagnetic

torque is given by (2). If J is the rotor moment of inertia, Bm

is the viscous friction coefficient and Tl is the load torque,
then the mechanical model can be written as follows:

Te �
eaia � ebib � ecic

ωr
, (2)

J
dωr

dt
�Bmωr � Te � Tl,

dθ

dt
� ωr. (3)

hence, the nonlinear state space model with xptq ��
ia ib ic ωr

�T and uptq �
�
va vb vc Tl

�T can be written as

dxptq
dt

� Axptq �Buptq, (4)

yptq � Cxptq, (5)

A �

�
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�
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�
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�
.

Assuming the BLDC motor is phase-balanced and wye-

connected then ia � ib � ic � 0 and vs �
ç

i�a

vi �
ç

i�a

ei.

Note that the motor can be modeled by just two currents as
the third current is dependent of the other two. From (2) to
(4), we can derive the BLDCM non linear state space model
with state variables ia, ib and ωr as follows:

A �

�
�R{L 0 λ{3Lp2fa�fb�fcq

0 �R{L λ{3Lp2fb�fa�fcq
λ{2Jpfa�fcq λ{2Jpfb�fcq �Bm{J

�
,

B �
1

3L

�
2 �1 �1 0
�1 2 �1 0
0 0 0 �3L{J

�
.

where the state variable xptq P R3 is given by xptq ��
ia ib ωr

�T
and the input vector uptq P R4 is given by

uptq �
�
va vb vc Tl

�T
. A P R3�3, B P R3�4 and C � I P

R3�3 are the matrices describing the dynamics of the BLDCM
continuous-time model (CTM). We can further simplify the
model in (4). In a BLDCM, there are only two phases being
driven at any time while the third phase is open. Assuming that
Bm ! 0 such that BmR � 0 and BmL � 0, and that phases
a and b are driven by voltage sources va and vb respectively,
then ic � 0 and ia � �ib. Therefore, the model in (4), with
ke � 2λ, xptq �

�
ia ωr

�T , uptq �
�
pva � vbq Tl

�T , can be
rewritten as

dxptq
dt

� A2�2xptq �B2�2uptq, (6)

yptq � C2�2xptq, (7)

A2�2 �
�
�R{L �ke{L
ke{J �Bm{J

�
, B2�2 �

�
1{L 0
0 �1{J

�
.

III. BLDCM SPEED CONTROLLER WITH LOOP DELAYS

Figure 2 presents the linearized model of a BLDCM speed
controller showing various sources of delay in the control loop.
Assuming the rotational speed ωr is measured at every tran-
sition of all three Hall sensor signals, the delay τh introduced
by the Hall sensor speed estimator is dependent on the shaft



speed ωr and is given by τh � 2π{6ωr. The discretization of
the PI controller and the LPF CTMs introduces an additional
discrete sampling time delay τ for each. In general, the
mechanical dynamical responses of medium and large size
motors running at moderate rotational speeds are much slower
than the dynamics of the effects introduced by the delays. It is
common design practice to ignore them without significantly
sacrificing the controller’s accuracy or performance. From
Table I, we can see that small and high speed BLDC motors
may have a mechanical time constant that is on the same
order of magnitude as the loop delays shown in Figure 2.
In many mission critical applications such as fuel pumps
and electric differential in electrical vehicles [3] [4] [5], it is
important to compensate load disturbance as fast as possible.
These applications require the design of fast controllers with
a short loop time. Therefore, those delays cannot be ignored
and their effect on the overall system stability must be taken
into account.
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Fig. 2. BLDC motor speed controller with sources of delay.

TABLE I
BLDC MOTORS SPECIFICATION. (1) BL3056 (2) MAXON 118888 (3)

MAXON 305013 (4) 500KRPM X 1KW PMSM (MEASURED IN REF. [16]).

Parameters BLDC Motors
1 2 3 4 Unit

Num. of poles 2 2 4 1
Rated speed 8.671 11.60 15.9 330 kRPM

Rated voltage 24.0 18.0 24.0 400 V
Rated power 28.96 50.05 103.2 1000 W

ph-ph resistance 2.3 0.573 0.102 0.5 Ω
ph-ph inductance 0.56 0.090 0.016 0.043 mH
BEMF constant 2.34 1.357 1.429 0.57* mV {RPM
Torque constant 22.3 13.0 13.6 5.46* mN.m{A
Elec. time cte 0.24 0.16 0.16 0.086 ms
Mech. time cte 7.4 6.82 1.82 26.67 ms
Rotor inertia 16.0 20.0 33.3 15.9 g.cm2

When speed control of a motor with voltage amplifier (no
current feedback) is desired, the plant can be modeled as a
second order system. From (6) and using the linear trans-
formation Hpsq � C2�2 psI �A2�2q

�1
B2�2 and further

assuming that Bm � 0, we can derive the BLDCM transfer
function Ωrpsq � HmpsqV psq between the terminal voltage
V psq � Vapsq � Vbpsq and the shaft rotational speed Ωrpsq
with Tl � 0 ig givn by (8). Defining the electrical and me-
chanical time constants as τelec � L{R and τmech � RJ{k2e
respectively, we can rewrite (8) as (9). The PWM-modulated

BLDCM driver transfer function Hpwmpsq is given by (10).

Hmpsq �
Ωrpsq

V psq
�

1{ke
RJ
k2
e

L
Rs2 � RJ

k2
e
s� 1

. (8)

Hmpsq �
Ωrpsq

V psq
�

1{ke
τmechτelecs2 � τmechs� 1

(9)

Hpwmpsq �
Vapsq

Vppsq
�

Vdc

τpwms� 1
, τpwm �

1

2fpwm
. (10)

Generally, its PWM frequency is much higher than the
controller sampling frequency such that Hpwmpsq � Vdc. The
BLDCM electrical and mechanical part, the LPF and the the
PI controller transfer functions Helec, Hmechpsq, Hf1psq and
Hppsq, respectively, are given by (11) to (13).

Helecpsq �
Iapsq

V psq
�

1{R

τes� 1
, τe �

L

R
, (11)

Hmechpsq �
Ωrpsq

Tepsq � Tlpsq
�

1{Bm

τms� 1
, τm �

J

Bm
, (12)

Hf1psq �
Ωf psq

Ωspsq
�

kf1
τf1s� 1

e�sτ , (13)

Hppsq �
Vppsq

Ωepsq
� kp

τiws� 1

τiws
e�sτ , τiw �

kp
ki

. (14)

where kf1 and τf1 are the gain and the LPF time constant;
kp, ki are respectively the proportional and the integral gains.
τiw is the PI controller time constant. From control systems
theory, we can easily see that the SPT transfer function Hspsq
assuming that the load torque input Tl � 0 is given by

Hs �
Ωr

Ωref
�

HpHpwmHmHf2e
�sτ

1�HpHpwmHmHf1e�sp2τ�τhq
, (15)

where the Laplace complex frequency s has been omitted
for the sake of clarity. Vdc is the DC bus voltage of the
PWM-modulated BLDCM driver and Hf2psq is the transfer
function of the input speed profiler. Similarly, assuming that
the rotational reference speed ωref � 0, the LDR transfer
function Hlpsq between the load torque Tl and the BLDCM
shaft rotational speed Ωr is given by

Hl �
Ωr

Tl
�

Hmech

1� keHx �HpHpwmHf1Hxe�sp2τ�τhq
, (16)

where Hx � keHelecHmech. The continuous-time delay τh
(previously defined as τh � 2π{6ωr) can only be sampled
between two sampling times τ . Therefore, its contribution
to the loop delay is given by supp τhτ q. Looking at (15) and
(16), we can notice that, in both transfer functions, all delay
contributions are lumped together in the total delay τt � mτ
with m � 2 � supp τhτ q. It is easy to see that the total delay
τt is inversely proportional to the shaft rotational speed ωr. In
this work, we will assume that, in case of the LDR response,
the variation caused to a steady-state speed ωr by variations
in the load torque Tl are sufficiently small such that the
total delay τt can be considered to be constant. Therefore,
the respective characteristic polynomials CHspsq � DpHspsqq



and CHlpsq � DpHlpsqq are given by (17) and (18).

CHspsq � kspτiws� 1qe�sτt � τiwspτls� 1qpτf1s� 1q (17)
CHlpsq � klpsτiw � 1qe�sτt � skmpsτf1 � 1q � (18)

sknpsτe � 1qpsτm � 1qpsτf1 � 1q

where D denotes the denominators of Hspsq and Hlpsq,
ks �

kpVdc

ke
, kl �

kpkekf1Vdc

R , km � τiw
K2

e

R and kn � Bmτiw.
It is important to notice that (17) and (18) are two different
retarded time delay systems (RTDS) with different roots and
a single discrete delay τt [17] [18]. Therefore, the SPT and
the LDR transfer functions have different stability conditions.
Optimum performance can not be simultaneously achieved
for both responses. Looking at (15) and (16), we can see
that τt contributes differently to each of the characteristic
polynomials. Thus, we should expect it to produce different
effects in the stability of Hspsq and Hlpsq. In the following
section, we will analyze the asymptotic stability of the speed
controller LDR response Hlpsq under the presence of the time-
delay τt. The method presented here can be easily extended
to analyze the stability of the SPT response Hspsq as well.

IV. STABILITY ANALYSIS WITH LOOP DELAYS

The work presented in [19] compares the performance
of some of the most important methods to determine the
imaginary characteristic roots of LTI retarded time delayed
systems of the type of (18). To the best of the author’s
knowledge, this method has never been used to study the
stability of BLDC motor drives. Reference [19] reports the
method initially proposed in [12] and later extended in [13]
and presents some important benefits compared to the other
four tested methods. It produces a smaller degree for the
crossing frequency polynomial and requires the search for real
roots instead of complex ones as in the other methods. This is
a great advantage as numerical roundoff errors make it very
hard to calculate complex imaginary roots. As an example,
we analyze here the asymptotic stability of the LDR response
of a Hall-based sensored controller. However, the method
proposed can be easily extended to analyze the stability of
the SPT response as well and of sensorless controllers such
as the direct Back EMF techniques. The procedure consists
in deploying the following substitution proposed by Rekasius
[20] and explained in [12]:

e�sτt �
1� sT

1� sT
, τ P ℜ�, T P ℜ, (19)

τt �
2

ω

�
tan�1 pωT q 	 lπ

�
, l � 0, 1, 2, . . . (20)

Note that this equation is exact (not an approximation) and
is defined only in s � ωi, ω P ℜ, with the obvious mapping
condition of (20). Given a frequency ω, it describes an
asymmetric mapping from one T value to an infinite number
of τt’s. Nevertheless, for the same τt there corresponds only
one T . Substituting (20) in (18) and multiplying both sides
of the equation by p1 � sT q, we obtain a new characteristic

polynomial in s without the transcendental term e�sτt .

CHlps, T q � klpsτiw � 1q p1� sT q � skmpsτf1 � 1q (21)
p1� sT q � sknpsτe � 1qpsτm � 1qpsτf1 � 1q p1� sT q

After some algebraic manipulation, we can rewrite (21) as

CHlps, T q � b5s
5 � b4s

4 � b3s
3 � b2s

2 � b1s� b0 (22)
b5 � knτeτmτf1T

b4 � knτeτmτf1 � pknτeτm � knτeτf1 � knτmτf1qT

b3 � kmτeτm � knτeτf1 � knτmτf1 � pkmτf1 � knτe�

knτm � knτf1qT

b2 � kmτf1 � knτe � knτm � knτf1 � pkm � kn � klτiwqT

b1 � klτiw � km � kn � keT b0 � kl

Equation (22) is the general form of the characteristic
polynomial of the speed controller of Figure 2, where the tran-
scendental exponential term has been removed by the Rekasius
mapping. CHlps, T q is a polynomial in s with parameterized
coefficients in T . The next step consists in determining all
values of T P ℜ which cause imaginary roots of type s � ωi.
This can be achieved by following the procedure explained in
detail in [19] and [12] and summarized here:

1) Form the Routh-Hurwitz array (RHA) of (22), set the
term in the s1 row to zero and calculate the roots Tcr

corresponding to the imaginary crossing frequencies.
2) The corresponding crossing frequencies s � ωi can be

found using the auxiliary equation formed by the s2 row
of the RHA Notice that the s2 row has two terms which
are functions of T . Check that their sign agree such that
the corresponding T values yield imaginary frequencies.

3) Check whether there are degenerate imaginary roots at
the origin (s � ωi with ω � 0) by checking the constant
term in (22) with no s term. If

°p
k�0 akp0q � 0 is

satisfied (where akpsq are the polynomials in s of 18),
there is at least one root at s � 0.

4) Search for imaginary roots when T � 	8. In this
case, e�sτt Ñ �1 and CHlps, T q becomes a simple
polynomial in s. If any root of this polynomial is purely
imaginary, it also becomes part of the solution.

5) Compute the root tendency RT of (23) which represents
the direction of the transition of the roots crossing the
imaginary axis to the unstable RHP (RT � �1) or to
the stable LHP (RT � �1), where n is the order of the
commensurate delays. Equation (18) has a single delay
τt such that n � 1 [12].

RT � sgn

�
���img

�
���

n°
j�0

a1je
�jτts

n°
j�0

jaje�jτts

�
��
�
��� , (23)

V. EXPERIMENTAL RESULTS

The testbench includes a Stellaris BLDC motor control
reference design kit (RDK-BLDC) and a Xilinx University
Program Virtex-II Pro Development Board. The BLDCM



model and PI-based speed controller were simulated in Mat-
lab/Simulink V2010a. The Stellaris kit comes with a Beijing
Motors BL3056 BLDC motor. Its shaft was connected through
a coupler to the shaft of a 24 Vdc DC motor operating in
generator mode. The generator stator was connected to various
resistive loads through an array of power switches. This
structure allowed us to quickly connect and disconnect loads to
the generator, creating accurate transient torque scenarios with
good accuracy and repeatability. Table II shows the parameters
used for the PI-controller kp and ki parameters. The objective
was, for a given BLDCM, to study how the PI controller tuning
affects the time delay range of stability. An ad-hoc approach
was used to tune the PI controller to two aggressive operating
points. AdHoc1 kp and ki parameters were chosen to place the
system transient response at the limit of stability. AdHoc2 kp
and ki values were chosen to also provide an aggressive tuning
albeit more conservative than AdHoc1 in order to generate
a fast and stable transient response. The TI entry show the
default values used in the Stellaris RDK-BLDC kit.

TABLE II
PI CONTROLLER PARAMETERS CALCULATED BY VARIOUS METHODS.

Parameter Tuning Method
TI AdHoc2 AdHoc1 Symbol

Samp. time (ms) 1.0 1.0 1.0 Ts

PI kp (x10�4) 1.22 4.679 1.22 kp
PI ki (x10�4) 3.66 633.5 1708 ki

PI time cte (ms) 333 7.39 0.715 τiw
τiw{τm Ratio 45 0.998 0.097 kτ

Consider the BLDC motor 1 of Table I. Applying test
conditions above on the characteristic polynomials (18) and
(22) and using the TI Stellaris PI controller parameters, we
observe the following results:

1) Setting the RHA term s1 to zero produces
two conjugate pairs of roots (which are
discarded) and the following real roots:
Tcr � p�0.0040071,�0.0002207, 2.8666189q.

2) Using row s2 of the RHA, we obtain the following
crossing frequencies: ωr � p6.9915, 0.3976q. Note that
root Tcr � 2.8666189 produces an ωr approaching zero
and was discarded.

3) Given that
°p

k�0 akp0q � 0, it follows that CHlpsq has
no degenerated imaginary roots at the origin.

4) When T � 	8 we have CHlps, T q � �klpsτiw � 1q �
skmpsτf1�1q�sknpsτe�1qpsτm�1qpsτf1�1q. Hence,
CHlps, T q does not admit any purely imaginary roots.

5) Finally, the root tendency is computed as: RT �
p�1, 1q. These results lead to the following critical delay
values: Tau � p0.8982, 4.2789q. Because the polynomial
has no unstable roots at τt � 0, and the first RT � �1
implies a transition to the RHP, the only stable time
delay interval is the range between 0 and 0.8982.

The algorithm presented in Section IV was coded in Matlab
m � language. Using kp and ki parameters of Table II, the
electrical parameters of the TI Stellaris BLDCM, a digital
LPF with cutoff frequency of ωf1 � 287.7 rad{s, BLDCM

rotational speed ωr of 6 kRPM and 1 kRPM , and sampling
time Ts � 1 ms, the proposed algorithm provided the
maximum control loop time delay τtpmaxq estimates shown
in Table III. From the same table, we see that the control
loop time delay at 6 kRPM and 1 kRPM is 3.7 ms and
12.0 ms respectively. As we can see, the TI Stellaris controller
has adopted an extremely conservative PI controller which
produces the sluggish transient response shown in Figure 3
and confirmed by the experimental results in Figures 4 and 5.

TABLE III
ESTIMATED TIME DELAY INTERVALS.

Parameter Tuning Method
TI AdHoc2 AdHoc1

τtpmaxq (ms) 898 24.1 7.3
τt@6KRPM (ms) 3.7 3.7 3.7
τt@1KRPM (ms) 12.0 12.0 12.0

G. Margin@6kRPM 56.5 53.84 0.59
P. Margin@6kRPM 82.7 53.55 4.39
G. Margin@1kRPM 58.4 61.64 8.26
P. Margin@1kRPM 82.0 29.67 -82.1
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Fig. 3. Delay Effect Using TI tuning values at ωr � 1kRPM .

The values adopted for kp and ki allow the controller to
handle control loop time delays on the order of hundreds of
milliseconds, albeit at the expense of very slow dynamical
responses. The extremely aggressive tuning of AdHoc1 pro-
duces a fast transient response that is very close to instability
for 6 kRPM and unstable for 1 kRPM , as predicted by the
proposed method. Finally, the AdHoc2 tuning values produce
very fast transient responses and very stable behavior at
6 kRPM . However, as the rotational speed ωr decreases to
1 kRPM , the phase margin starts to approach critical levels
and we should expect some oscillatory behavior. These results
are confirmed by the Nyquist plot and the step responses
shown in Figures 6 and 7.

VI. CONCLUSION

This work presented an effective technique to analyze the
algebraic asymptotic stability of a BLDCM speed controller
with strong time delays. The new approach is based on an



Fig. 4. Speed transient from 1000 to 6000 RPM at no load.

Fig. 5. Torque transient test at 3000 RPM (0 - 27.8 m NM - 0).
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Fig. 6. Delay Effect Using AdHoc2 tuning values at ωr � 6kRPM .
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Fig. 7. Delay Effect Using AdHoc2 tuning values at ωr � 6kRPM .

algebraic method and is particularly useful to analyze the
effect of a range of delay values. The proposed method
contributes to the improvement of the robustness of high speed
controllers by producing an explicit expression for the stability
range for the total time delay in the controller loop. In the near
future, we plan to extend the current results to others types of
electrical machines.
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